??攻略|13招神技 让你在数据科学和数据分析工作中脱颖而出
副标题[/!--empirenews.page--]
简介:我有幸在很早参与了一个大数据科学项目,我非常喜欢其中的工作,甚至我意识到我的努力可以增加一些公司的价值。 然而,可悲的是,只有不到30%的数据科学项目最终实施了。我备受打击的意识到我的努力被浪费了。但是,我不是唯一的一个。几乎,每一个分析家都有同样失望的感觉。
即使在今天,数据科学行业面临的真正挑战是企业和分析人员之间缺乏协调。令我惊讶的是,我甚至注意到,这些人更喜欢坐在同一个办公室里坐在一起。 如果这两种技能的专业人士很普遍,我们就可以看到一个实施可能性更高的项目。在过去的四年里,我花了很多时间思考使一个项目成功的最佳实践。 我发现,如果有个对症的人坐在你的办公室,他能明确定义业务问题,并且诱导你突破思维定式,你将突破管窥限制。 因此,你在数据科学/分析工作中正在取得成功时,我建议你遵循下面提到的提示。这些都是尝试和测试的总结。为了获得最大的利益,我建议你遵守。我从他们身上已经受益。现在轮到你了! 以下是优先顺序 在你开始解决问题之前请先掌握业务我知道你是一个数据分析师,所有你关心的都是数字。但是,一个令人敬畏的业务分析师和一般数据分析师有哪些不同呢?那就是他们对业务理解的潜质。你应该在开始你的第一个项目之前试着去了解企业。下面是一些你应该需要探索的东西:
如果你能回答这些问题,你对开始你的第一个项目已入门。 想想你是正在解决一个潜在问题,还是只是一个结果我观察到,分析师瞄准的甚至不是问题的主要目标。例如,让我们想象一下,我们发现,一个客户在拨打客户服务电话,谈话更多的是他在放弃服务。 现在,如果我们开始解决降低客户服务的呼叫数量的方法,我们可能不会降低流失率。相反,在你没有过失的情况下,我已经看到你客户较高的不满。这可能是一个简单的致命伤,你会拒绝进入这种简单的陷阱。但是,现实生活中的问题几乎难以发现。我想说,解决一个明确的问题要比找到解决问题的正确方法要容易的多。 花费更多的时间在找到正确的评估指标和完成工作需要的必备条件这个可能是对分析师来说是非常容易解决的一个难题,但也是最容易导致失败的一个陷阱。让我用几个简单例子来做解释。 假设,你将要建一个营销活动的目标模型,你将选择哪个指标来评估你的模型:
(编辑:南通站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |